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RESUMO

Herrera, J. P. Transferência de aprendizado na avaliação da qualidade de maçãs.
2023. 41p. Monografia (MBA em Inteligência Artificial e Big Data) - Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2023.

Dentre as diversas técnicas de END empregadas na indústria, a espectroscopia é uma das
mais significativas no âmbito da visão computacional. Através dela, é possível observar
detalhes que não podem ser vistos em imagens RGB. No entanto, a aquisição de equipa-
mentos capazes de capturar imagens espectrais é cara e de difícil acesso, o que resulta em
bases de dados com poucas amostras em outras faixas além da visível. Neste trabalho, é
explorado o papel da transferência de aprendizado a partir de uma pequena base de dados
no infravermelho próximo de maçãs para potencializar a classificação de maçãs em RGB,
que são de muito mais fácil acesso. A faixa espectral utilizada é capaz de evidenciar os
defeitos em maçãs que são difíceis de serem vistos nas imagens RGB, dificultando, assim,
a identificação dos principais padrões que caracterizam uma maçã de má e boa qualidade.
Para comparação, são realizadas transferências de aprendizado a partir de bases de dados
de diferentes frutos frente às imagens espectrais. Os resultados indicaram que uma base
composta de imagens RGB de limões apresentou maior impacto do que as próprias imagens
de maçãs no infravermelho próximo.

Palavras-chave: Transferência de aprendizado. Imagens espectrais. Maçãs. Classificação.





ABSTRACT

Herrera, J. P. Transfer learning in apple quality assessment. 2023. 41p. Monograph
(MBA in Artificial Intelligence and Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

Among the various Non-Destructive Evaluation (NDE) techniques employed in the industry,
spectroscopy holds significant importance in the field of computer vision. It allows us to
observe details that are not visible in RGB images. However, acquiring equipment capable
of capturing spectral images is expensive and often challenging, resulting in databases
with limited samples beyond the visible range. In this study, we explore the potential
of transfer learning from a small database of near-infrared apple images to improve the
classification of RGB images, which are more readily available. The selected spectral range
can highlight defects in apples that are challenging to see in RGB images, making it difficult
to identify the key patterns characterizing good or bad quality apples. For comparison,
transfer learning is performed using databases of different fruits against spectral images.
The results indicate that a database composed of RGB images of lemons had a more
significant impact than images of apples in the near-infrared themselves.

Keywords: Transfer Learning. Spectral images. Apples. Classification.
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1 INTRODUÇÃO

Nos últimos anos, programas de computador baseados em técnicas de visão compu-
tacional ganharam destaque no setor industrial global. Com o advento da indústria 4.0,
modelos de aprendizado de máquina têm sido explorados em larga escala dado seu alto
potencial em realizar tarefas humanamente exaustivas, custosas e até mesmo periculosas
(LIU et al., 2023). Aliados aos benefícios que a tecnologia baseada em inteligência artificial
tem a oferecer, avanços realizados na microeletrônica permitiram não apenas o aprendizado
de modelos profundos em tempo viável, mas também a otimização de processos industriais
por meio de ensaios não destrutivos (END), isto é, inspeções realizadas sem a necessidade
de danificar a estrutura de um objeto.

Dentre as diversas técnicas de END empregadas na indústria, a espectroscopia
é uma das mais significativas no âmbito da visão computacional. Isso se deve à capaci-
dade dos sensores espectrais de obter informações em um nível mais amplo do espectro
eletromagnético, além da faixa perceptível ao olho humano. Essas informações, também
chamadas de assinatura espectral, são únicas e estão estritamente associadas à composição
química dos objetos. (YAN; REN; SUN, 2022; MONAKHOVA et al., 2020; BACCA; MAR-
TINEZ; ARGUELLO, 2023). A partir de uma análise minuciosa da assinatura espectral,
é possível identificar diferentes tipos de materiais, objetos e processos físicos (BACCA;
MARTINEZ; ARGUELLO, 2023). Em vista disso, são amplas as aplicações envolvendo
sensores espectrais que podem ser empregadas na indústria, como por exemplo na área
de alimentos (XIANG et al., 2022; THIELE et al., 2023), metalurgia (YAN; REN; SUN,
2022), agricultura (LI; ZHANG; SHEN, 2020; AGYEMAN et al., 2022; WU et al., 2023) e
médica (HERRERA et al., 2023; SEIDLITZ et al., 2022).

As câmeras multi e hiperespectrais são as principais fontes de aquisição de imagens
espectrais. A principal diferença entre esses dois tipos de câmeras está relacionada com a
quantidade de bandas que cada uma é capaz de capturar. As câmeras multiespectrais, em
média, capturam de uma a quatro bandas distintas, enquanto as câmeras hiperespectrais
podem capturar dezenas ou até centenas delas (BACCA; MARTINEZ; ARGUELLO, 2023;
VIVONE, 2023). Apesar do grande potencial que a tecnologia oferece, as câmeras espectrais
possuem elevado custo, necessidade de alto poder computacional para processamento de
suas imagens e baixa resolução espacial, isto é, incapacidade de distinguir objetos muito
próximos ou detalhes finos. Devido a isso, a disponibilidade de bases de dados públicas
de diferentes aplicações envolvendo imagens espectrais é limitada. Dentre as disponíveis,
poucas se apresentam como alternativas viáveis para produzir conhecimento em modelos
de deep learning para tarefas como detecção, classificação e segmentação.

Visando mitigar tais problemas, técnicas já difundidas na literatura podem ser
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apontadas como alternativas para auxiliar no processo de adaptação do conhecimento a
partir de uma base de dados com poucas amostras. Xishuai et al. (2016) sugerem o uso de
transferência de aprendizado em imagens RGB para classificação de cenas em imagens
NIR. Os resultados indicaram uma eficácia no uso da técnica em comparação com outros
métodos já existentes. Anos depois, os mesmos autores novamente propuseram o uso de
transferência de aprendizado para aliviar a escassez de imagens nas bandas RGB-NIR,
além da destilação de conhecimento para realizar a fusão das principais características
extraídas para tarefa de classificação de cenas (PENG et al., 2018).

Estratégias alternativas, como a geração de imagens sintéticas em bandas NIR a
partir de imagens RGB por meio de transferência de estilo, também têm apresentado grande
destaque na comunidade científica. Stump et al. (2022) explora técnicas de transferência de
estilos para, a partir de datasets diversos compostos por imagens RGB, gerar representações
virtuais na banda NIR para treinamento de detectores de objetos. Os autores também
propuseram um novo modelo baseado em meta-learning que se mostrou mais robusto
dentre as técnicas abordadas. Xu, Tang and Pang (2022) propõem uma nova abordagem
para detecção de falhas em motores de indução utilizando técnicas de few-shot learning
em imagens térmicas infravermelhas. A partir de um módulo de atenção desenvolvido
denominado coordinate attention feature extraction module (CAFEM), foi possível explorar
as características espaciais de forma eficaz, permitindo, assim, que o modelo CAPNet,
variação proposta do modelo ProtoNet, atingisse acurácia expressiva frente à outros
modelos difundidos na literatura.

Apesar dos significativos avanços relatados nos últimos anos no treinamento de
modelos profundos com um número limitado de amostras, poucos estudos exploraram o
tema tratando-se de imagens além do espectro visível. Esse cenário pode ser atribuído
aos custos elevados dos dispositivos para aquisição dessas imagens e, em alguns casos,
à necessidade de conhecimento prévio das propriedades físicas e químicas dos objetos
ao escolher os sensores e filtros ideais para que suas principais características sejam
evidenciadas na imagem. Além disso, é sabido que uma porcentagem significativa dos
modelos profundos necessitam, além de um grande número de amostras, um alto poder
computacional. Esses fatores restringem o acesso à tecnologia fora dos centros acadêmicos
e empresas de tecnologia, capazes de realizar altos investimentos em infraestrutura. Dentre
esses e outros motivos, é que a transferência de aprendizado desempenha um importante
papel no acesso à tecnologia, haja visto que o conhecimento adquirido anteriormente pode
ser reaproveitado para treinamento em diferentes contextos.

Dito isso, algumas questões podem ser levantadas em relação ao papel da trans-
ferência de aprendizado no treinamento de redes neurais profundas a partir de imagens
espectrais, como "Um pré-treinamento de objetos iguais em bandas diferentes possui
maior impacto do que diferentes objetos em bandas iguais?", ou então "Como sucessivas
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transferências de aprendizado afetam na robustez de um modelo de classificação?". Neste
sentido, este trabalho tem como objetivo explorar o papel da transferência de aprendizado
em diferentes cenários envolvendo imagens no espectro visível e infravermelho próximo.
Para tais experimentos, foi desenvolvido uma base de dados composta por 70 imagens
RGB e NIR de maçãs tiradas em ambiente com iluminação controlada. Os experimentos
foram conduzidos utilizando o modelo de redes neurais convolucionais ResNet50.

1.1 Organização do texto

No Capítulo 2 são apresentadas noções básicas relacionadas à radiação eletromag-
nética e sua interação com objetos do mundo real, base para o entendimento das imagens
infravermelhas utilizadas nos experimentos. Além disso, são discorridos os principais con-
ceitos envolvendo o modelo ResNet50, utilizado neste trabalho para classificação de frutas.
No Capítulo 3 descreve a metodologia utilizada para aquisição das imagens de maçãs e dos
experimentos realizados para avaliar o impacto da transferência de aprendizado. Por fim,
os resultados obtidos são apresentados na Seção 3.6, seguidos pelas conclusões, discorridas
no Capítulo 4.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, são discorridos os principais conceitos que fundamentam a natureza
do problema e da solução proposta.

2.1 Luz e o espectro eletromagnético

A luz possui uma natureza dual, comportando-se ora como onda - pois possui um
comprimento de onda eletromagnético - ora como partícula. Embora os seres humanos
possam interpretar informações apenas em uma pequena faixa do espectro eletromagnético,
câmeras e outros dispositivos especializados têm a capacidade de processar uma gama
muito mais ampla de ondas, incluindo faixa de luz ultravioleta e infravermelha. (IKEUCHI
et al., 2020)

O ultravioleta abrange comprimentos de onda entre 200 e 400 nanômetros, com
ondas abaixo de 320 nanômetros sendo consideradas prejudiciais aos seres humanos. Acima
desse limite, é utilizado como fonte de luz para excitar substâncias fluorescentes. A faixa
visível do espectro se estende de 380 a 760 nanômetros. Além disso, temos o infravermelho,
que pode ser subdividido em três faixas principais: infravermelho próximo (760 a 1400 nm),
infravermelho médio (1400 a 15000 nm) e infravermelho distante (15 a 1x106nm). A 1 ilustra
o espectro eletromagnético e as diferentes faixas de ondas. À esquerda, concentram-se raios
de menor comprimento de onda. Mais à direita, os comprimentos de onda aumentam.

O infravermelho próximo é amplamente utilizado em aplicações de escaneamento
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Figura 1 – Faixas do espectro eletromagnético.
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3D, controle remoto e comunicações. Embora invisíveis aos olhos humanos, sensores de
silício podem detectar esses comprimentos de onda. Isso difere das ondas do infravermelho
distante, que são geralmente absorvidas por moléculas de água na atmosfera. A região do
infravermelho próximo (NIR) é especialmente útil na biofotônica devido à sua capacidade
de penetrar mais profundamente nos tecidos em comparação com a faixa visível (VIS),
permitindo estudos com especificidade química (POPESCU, 2019).

2.2 Conceitos básicos de aprendizado de máquina

Até o tardar dos anos 2000, as técnicas de machine learning eram frequentemente
associadas ao termo de engenharia de características. Isso porque as técnicas do estado-da-
arte até então compreendiam-se em reconhecer padrões de características extraídas por um
especialista. Cabia à este especialista, então, conhecer profundamente as características
relevantes dos dados, os descritores e seus parâmetros ideais, além do modelo ideal para
aprender a discriminar com base nas informações extraídas.

De forma oposta, o aprendizado profundo têm sido empregado de uma forma mais
ampla, de modo que a etapa de extração de características também fosse incumbida ao
próprio modelo. Cabia a este, através de operações matemáticas, descobrir quais e como
extrair as características mais relevantes do conjunto de dados de forma autônoma. Para
dados não estruturados, como imagens e texto, tais modelos contribuíram significativamente
para o avanço da inteligência artificial na área (STEVENS; ANTIGA; VIEHMANN, 2020).

2.2.1 Redes Neurais Convolucionais

Redes Neurais Convolucionais, como o própio nome sugere, são majoritariamente
formadas por camadas convolucionais. As camadas convolucionais usualmente recebem
como entrada uma imagem representada como um tensor, aplica um determinado número
de kernels, bias, funções de ativações para introduzir não-linearidade ao resultado da
convolução e produzem como resultado uma matriz. Uma convolução pode ser definida
como:


α11 α12 α13

α21 α22 α23

α31 α32 α33

 ∗


k11 k12 k13

k21 k22 k23

k31 k32 k33

 =
N∑

i=1

M∑
j=1

αijkij,

onde α11, α12, ..., αmn representam os respectivos índices de um tensor de entrada
bidimensional e k11, k12, ..., kmn valores do kernel utilizado para convolução. Tipicamente,
uma imagem tende a ser muito maior que um kernel, por isso, durante a convolução,
realiza-se um deslocamento da esquerda para a direita, de cima para baixo:



23

Bij = (A ∗ K)ij =
nK−1∑
f=0

nK−1∑
h=0

Ai+f,j+hKi+f,j+h

A medida em que a variabilidade de uma base de dados aumenta, torna-se cada vez
mais complexo definir manualmente quais são os kernels ideais para convoluir as imagens
de entrada. Por isso é necessário aprender os valores através das imagens de entrada e saída.
Primeiramente, o kernel é construído com valores aleatórios, em seguida, iterativamente,
aplica-se o erro quadrático médio para comparar uma saída Y com a saída da camada
convolucional, calculando, por fim, o gradiente para atualização dos pesos (ZHANG et al.,
2021).

2.2.2 Pooling

As camadas pooling são muito importantes para permitir que características sejam
extraídas em diferentes níveis, desde pequenos detalhes na imagem até traços mais grosseiros
que podem remeter ao objeto como um todo (ZHANG et al., 2021). Geralmente, essas
camadas sempre acompanham uma camada convolucional, haja visto que elas possuem
um propósito bem específico que é de reduzir a dimensionalidade dos tensores. Por isso,
não possuem pesos, apesar de possuírem parâmetros (MICHELUCCI, 2019).

As camadas de pooling possuem dois principais parâmetros: o tamanho da janela e
o deslocamento na imagem. Em suma, uma janela de tamanho pré-definido percorre toda
a imagem, e, assim como a convolução, sua operação resulta em apenas um escalar. As
operações mais comuns são o cálculo do valor máximo e do valor médio dos pixels que
estiverem dentro da janela.

8

2

7

1

7

0

6

9

5

2x2 Max Pooling
8 9

7 9

Figura 2 – Exemplificação da operação de Max pooling em uma matrix de 3x3 considerando
uma janela de tamanho 2x2 e stride 1.

2.2.3 Camadas Densas

Camadas densas são camadas onde há a conectividade completa entre os neurônios
de uma rede neural. Isso significa que cada neurônio em uma camada está conectado a
todos os neurônios na camada anterior e na camada seguinte (BALLARD, 2018). Essa
conectividade permite a captura de padrões complexos nos dados de entrada, por isso, são
geralmente empregadas entre as camadas finais de uma rede neural profunda para realizar
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tarefas específicas como classificação de padrões, regressão, entre outras (ROSEBROCK,
2017).

Cada neurônio da camada densa recebe um estímulo representado pelas variáveis
de entrada. Cada valor de entrada é multiplicado pelo seu respectivo peso sináptico - cujo
valores são iniciados aleatoriamente e vão se ajustando ao longo do treinamento por meio
do algoritmo de Backpropagation. Dessa multiplicação, obtém-se o potencial de ativação
através da soma ponderada dos sinais de entrada, que, ao passar por uma função de
ativação, produz uma saída normalizada (SILVA; SPATTI; FLAUZINO, 2010). A Figura
3 ilustra um neurônio artificial, principal componente das camadas densas.

y...

w0

w1

wN

y := f(z)

x0

x1

xN

Figura 3 – Esquematização de um neurônio artificial

2.2.4 Normalização por lotes

Normalização por lotes é uma eficiente técnica para estabilização e aceleração da
convergência do aprendizado durante a etapa de treinamento, permitindo, assim, que o
aprendizado de representações complexas dos dados ocorra de forma mais eficaz (ZHANG
et al., 2021; ROSEBROCK, 2017). Isso se dá pois, à medida em que os dados percorrem as
camadas da rede durante o processo de aprendizado, a magnitude das camadas podem variar
significativamente, podendo resultar em gradientes muito pequenos (gradient vanishing) ou
gradientes muito grandes (gradient exploding). A partir da normalização por lotes, os dados
passam a ficar centralizados em 0 e possuírem um desvio padrão unitário (CHOLLET,
2021; GOODFELLOW; BENGIO; COURVILLE, 2016), i.e.:

H ′ = H − µ

σ
,

onde H corresponde à um mini lote de ativações da camada a ser normalizada, µ é um
vetor de médias de cada unidade do lote e σ é um vetor com o desvio-padrão de cada
unidade do lote.

2.2.5 Dropout

Camadas de dropout são técnicas de regularização do estado da arte e correspondem
basicamente em desconectar aleatoriamente uma quantidade finita de ativações em cada
ciclo de treinamento. Em outras palavras, alguns nós da rede são multiplicados por
zero, fazendo com que apenas uma pequena subseção seja treinada por vez. A eficácia
dessa técnica baseia-se no fato de que pequenas redes tendem a gerar menos overfitting,
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pois possuem uma menor capacidade de se apegar aos detalhes mais granulares, isto é,
ruídos (TRASK, 2019; CHOLLET, 2021; GOODFELLOW; BENGIO; COURVILLE, 2016;
BALLARD, 2018).

2.2.6 ResNets

Ainda que a técnica de normalização por lotes (Subseção 2.2.4) possa mitigar o
problema de gradient vanishing e gradient exploding ao normalizar as informações que
fluem pela rede durante a etapa de treinamento e ao reduzir a dependência de uma
inicialização cuidadosa dos pesos, ela não garante a total solução do problema (BALLARD,
2018). Isto posto, He et al. (2016) propuseram um novo módulo de arquitetura capaz
de propagar camadas para regiões mais profundas da rede, criando, assim, um caminho
alternativo para o gradiente fluir (ELGENDY, 2020). Tais camadas são chamadas de Skip
Connections.

O modo com que as Skip Connections solucionam o problema de gradient vanishing
e gradient exploding, permitindo que redes muito mais profundas possam convergir, está
relacionado com o fato de que ao propagá-las, as saídas das funções de ativação das
primeiras camadas são somadas à operação de multiplicação dos pesos pelas entradas de
camadas mais profundas (RAMO, 2019). Na arquitetura do modelo ResNet34, ilustrada
na Figura 4, é possível visualizar as skip connections entre cada bloco (também chamado
de unidade ou bloco residual) de duas camadas convolucionais com kernel 3x3, stride 1 e
função de ativação ReLU.

Figura 4 – Arquitetura de modelo de rede residual de 34 camadas proposta por He et al.
(2016). FONTE: He et al. (2016)

O advento das Skip Connections permitiu com que mais camadas pudessem ser
adicionadas (e, consequentemente, maior complexidade) sem degradação de performance.
Nesse sentido, diversas variações da ResNet foram propostas, como a ResNet50, ResNet101
e ResNet152. O modelo da ResNet50, como o próprio nome sugere, possui 50 camadas de
profundidade. Além disso, a partir desse modelo, os blocos residuais passaram a compor
3 camadas: 1 camada convolucional com kernel 1x1 para diminuir a dimensão da pilha
de mapas de características de entrada, 1 camada convolucional com kernel de 3x3 para
extração de características e uma outra camada convolucional de kernel 1x1 para diminuir
a dimensão da pilha de mapas de características de saída. Todas as camadas são seguidas
de normalização por lotes e função de ativação ReLU (ELGENDY, 2020). Essa abordagem
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se mostrou útil para controlar o número de mapas de características nas camadas mais
profundas da rede, reduzindo, assim, a complexidade e a quantidade de pesos.

2.2.7 Transferência de Aprendizado

Com o advento de modelos cada vez mais profundos e computacionalmente custosos,
houve uma crescente demanda por técnicas capazes de acelerar o processo de treinamento
e otimizar a forma com que tais modelos realizam o aprendizado. Esta é justamente a
proposta das técnicas de transferência de aprendizado. A transferência de aprendizado,
em poucas palavras, corresponde em transferir o aprendizado realizado por um modelo
para solucionar um problema para a generalização de outro problema (GOODFELLOW;
BENGIO; COURVILLE, 2016; ELGENDY, 2020; MICHELUCCI, 2019).

Para que a transferência de aprendizado seja realmente efetiva, Goodfellow, Bengio
and Courville (2016) mencionam que fatores que explicam as variações no conjunto
de dados usado para aprendizado prévio devem ser, de algum modo, relevantes para o
aprendizado atual. Tratando-se de visão computacional, sabe-se que muitas características
visuais compartilham as mesmas representações básicas, como por exemplo de formas,
mudanças geométricas, iluminação, textura, etc. Transferir aprendizado, neste contexto,
significaria utilizar as camadas de um modelo aptas a reconhecer tais representações para
um novo propósito.

Segundo Ramo (2019), existem dois principais fatores que interferem o uso de
transferência de aprendizado. O primeiro é a quantidade e qualidade dos dados que
temos em mãos, e o segundo, a capacidade de poder computacional disponível para
treinamento do modelo. Quando não há uma grande quantidade de dados disponíveis e há
recursos computacionais limitados, uma possível solução é procurar um modelo já treinado
previamente para um problema similar, que envolva, por exemplo, classes e contextos
iguais. Diante disso, seria factível congelar as camadas escondidas e treinar apenas a
última camada. Congelar as camadas, nesse caso, corresponde em impedir que os pesos
reutilizados sejam atualizados durante a etapa de retropropagação (backpropagation).

Em um cenário onde há um pouco mais de dados, mas ainda insuficientes para
generalizar o aprendizado a partir de pesos inicializados aleatoriamente em tempo e
acurácia aceitáveis, além de um pouco mais de recursos computacionais disponíveis para
treinamento, é possível congelar menos camadas. Desse modo, a probabilidade de se obter
melhores resultados é maior, dado que mais pesos estão sendo ajustados ao problema.
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3 AVALIAÇÃO EXPERIMENTAL

Os experimentos conduzidos nesse trabalho abrangeram cinco principais etapas,
que constituem em "aquisição de dados", "anotação dos dados", "pré-processamento",
"treinamento dos modelos"e "avaliação do aprendizado"(Figura 3). Ao longo deste capítulo,
serão abordadas as metodologias empregadas em cada uma delas.

Aquisição Anotação Pré-processamento Treinamento Avaliação

3.1 Aquisição de Dados

Três conjuntos distintos de dados foram utilizados para treinamento e avaliação
dos modelos. Dois deles, "Lemon Quality Dataset"e "Mangas Embrapa", possuem imagens
coletadas apenas na faixa visível do espectro eletromagnético (imagens RGB), e um terceiro,
"Maçãs 1.0", é composto por imagens tanto coloridas quanto infravermelhas (imagens
monocromáticas). Tais conjuntos correspondem a diferentes tipos de frutos em diferentes
estágios de maturação separados entre as classes "boa qualidade"e "má qualidade".

3.1.1 Lemon Quality Dataset

Trata-se de um conjunto de dados públicos disponibilizado no portal Kaggle
(KOROGLU, 2022). Tal conjunto é composto por 2533 imagens comprimidas no formato
JPEG de resolução 300x300 pixels. Cada imagem corresponde à um limão posicionado
sobre uma superfície de concreto texturizada, fotografada em condições de iluminação solar
indireta. As imagens apresentam variações de escala, rotação e nitidez e estão rotuladas
entre duas classes distintas: "má qualidade", com 942 amostras e "boa qualidade"com 1125
amostras. Outras 466 imagens não contém frutos e foram descartadas.

3.1.2 Mangas Embrapa

A base de dados Mangas Embrapa (nome fantasia) (INSTRUMENTACAO, 2014)
é composta por 51 imagens de mangas do tipo Palmer. Sua aquisição foi realizada no
verão do ano de 2014 por pesquisadores da Embrapa Instrumentação, localizada na cidade
de São Carlos - SP. Ao todo, foram utilizados 12 exemplares para compor o conjunto de
dados, sendo que para cada exemplar, foram capturadas imagens de diferentes lados da
fruta em diferentes estágios de maturação, além da polpa da fruta. Cada imagem possui
tamanho de 1024x768 pixels e 3 camadas (RGB) em formato JPEG.
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(a) (b)

(c) (d)

Figura 5 – Exemplo de amostras da base de dados "Lemon Quality Dataset". As imagens
a) e c) correspondem a limões de boa qualidade, e as imagens b) e d), limões
de má qualidade

3.1.3 Maçãs 1.0

A base de dados Maçãs 1.0 corresponde à um conjunto de imagens de maçãs
adquiridas pelo autor deste trabalho no mês de abril de 2023. Para a coleta dos dados,
foram utilizadas duas câmeras distintas: a High Quality Camera (HQ Cam) para Raspberry
Pi, equipada com uma lente varifocal de 8 a 50 mm para capturar imagens na faixa de
luz visível, e a câmera Mako G-125B com filtro BP735 para capturar imagens na faixa do
infravermelho próximo. Foi utilizada uma light box da marca Puluz, com dimensões de
40x40x40 cm, para controlar a iluminação durante as capturas e a distância entre a câmera
e o objeto foi de aproximadamente 1 metro. Ambas as câmeras foram posicionadas lado a
lado e o acionamento de captura foi realizado por meio de software específico para cada
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(a)

(b) (c) (d)

Figura 6 – Exemplo de amostras da base de dados "Mangas Embrapa". Em a), uma imagem
inteira com identificação da fruta. Em b), c) e d), exemplares de mangas em
diferentes estágios de maturação.

modelo. Para a HQ Cam, utilizou-se o software raspistill, enquanto para a Mako G-125B
utilizou-se o software Vimba versão 6.0, disponível no site da fabricante Allied Vision.
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Ao todo, foram capturadas 70 imagens RGB de resolução de 4056x3040 e 70 imagens
monocromáticas de resolução de 1292x964. Para essa aquisição, foram utilizadas 6 maçãs,
sendo 4 do tipo "nacional"e 2 do tipo "Argentina".

(a) (b)

(c) (d)

Figura 7 – Exemplo de amostras da base de dados "Maçãs 1.0". Na primeira coluna,
formada pelas amostras a) e c), é possível visualizar duas maçãs capturadas
com a câmera HQ Cam. Em b) e d) as mesmas frutas obtidas utilizando a
câmera espectral Mako G-125B.

3.2 Anotação

O processo de anotação dos dados foi realizado utilizando a ferramenta CVAT
versão 2.5.0 para Desktop. Para cada amostra, foi associado um valor dentre as categorias
"alta qualidade"e "baixa qualidade"mediante uma análise visual das imagens. Haja visto
que o anotador não apresentava conhecimento técnico qualificado para avaliar a qualidade
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do fruto, o critério estabelecido baseou-se na presença de manchas na casca, de modo
que frutos com manchas ou anomalias foram classificados como de "baixa qualidade",
enquanto aqueles com cascas de textura uniforme foram categorizados como de "alta
qualidade". Dos três conjuntos de dados utilizados no estudo, o "Mangas Embrapa"e
"Maçãs 1.0"precisaram ser anotados. As anotações da base "Lemon Quality Dataset"foram
disponibilizadas juntamente com as imagens.

A anotação dos dados se deu através da delimitação do fruto por meio de bounding
boxes. Essa abordagem possibilitou, a partir de suas coordenadas, reduzir a quantidade
de informação das imagens e filtrar padrões irrelevantes para o escopo do estudo que
pudessem produzir algum viés de aprendizado do modelo, como a identificação numérica
das mangas. Ao todo, 32 mangas foram classificadas como sendo de "boa qualidade"e 18
como sendo de "má qualidade". Já para a base de dados maçãs, 34 foram classificadas
como de "boa qualidade"e 36 como de "má qualidade".

3.3 Pré-processamento

Três algoritmos foram utilizados para pré-processamento dos dados. A partir das
imagens obtidas, foram extraídas as regiões de interesse com base nas coordenadas dos
bounding boxes anotados. Para padronizar o tamanho das amostras, aplicou-se a técnica
de zero padding, que corresponde em adicionar pixels de valor 0 nas bordas da imagem.
Apenas as bordas do eixo de menor dimensão sofreram alterações, resultando, assim, em
uma imagem de dimensões iguais. Por fim, todas as imagens foram redimensionadas para
300x300 pixels.

A divisão das bases de dados entre os subconjuntos de treinamento, validação
e teste ocorreu de forma aleatória utilizando a semente ia − bigdata − 2023. Do total
de imagens da base de dados Maçãs 1.0, 70% foram destinadas para o subconjunto de
treinamento, 20% para o subconjunto de validação e 10% para o subconjunto de teste.
Para as bases restantes, utilizadas nesse estudo como pré-treinamento, 70% das amostras
foram utilizadas para treinamento e 30% para validação.

Para evitar overfitting dos modelos de classificação e direcionar o aprendizado
para os padrões relevantes de cada fruto, alguns experimentos foram realizados utilizando
técnicas de aumentação de dados no subconjunto de treinamento. Foram selecionados cinco
algoritmos da biblioteca Albumentations. Para cada imagem pertencente ao subconjunto de
treinamento, foram aplicados, com probabilidade de 50% cada, algoritmos cujo parâmetros
estão detalhados na Tabela 1. Destaca-se que alguns desses parâmetros correspondem à
um range de valores, e, portanto, referem-se apenas aos valores mínimos e máximos que
podem assumir. Com isso, os valores reais são determinados aleatoriamente e em tempo
de execução, processo tal qual é conhecido como aumentação de dados online.
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Algoritmo Parâmetros

RandomRotate90 -

Downscale
scale_min=0.87,
scale_max=0.99

GridDistortion

num_steps=1,
distort_limit=(-0.12, 0.07),
interpolation=0,
border_mode=4,
value=(0, 0, 0),
mask_value=None,
normalized=False

RandomBrightnessContrast

brightness_limit=(-0.16, 0.52),
contrast_limit=(-0.3, 0.2),
brightness_by_max=True

ShiftScaleRotate

shift_limit_x=(-0.01, -0.01),
shift_limit_y=(-0.01, -0.01),
scale_limit=(-0.007999999999999996, 0.08599999999999999),
rotate_limit=(0, 0),
interpolation=4,
border_mode=4,
value=(0, 0, 0),
mask_value=None,
rotate_method=largest_box

Tabela 1 – Algoritmos e parâmetros utilizados para aumentação de dados durante a etapa
de treinamento

3.4 Configuração Experimental

Os primeiros experimentos envolveram o treinamento do modelo ResNet50 utili-
zando pesos pré-treinados da base de dados ImageNet (DENG et al., 2009), disponibilizados
pela biblioteca TorchVision na versão 0.14.0. Durante esta fase, foi realizado um trei-
namento para cada conjunto de dados, utilizando lotes de 16 imagens e uma taxa de
aprendizado de 0.001. Esses experimentos correspondem aos itens 1, 2, 3 e 4 na coluna
“Treinamento” da Tabela 2. Os experimentos de 5 a 7 foram conduzidos utilizando os pesos
obtidos no experimento 1 como ponto de partida. Da mesma forma, os experimentos de 8 a
9 utilizaram os pesos do experimento 5, o experimento 10 utilizou os pesos do experimento
8, e os experimentos 11 e 12 utilizaram os pesos dos experimentos 2 e 3, respectivamente. A
partir do experimento 5, todos os treinamentos foram realizados com taxa de aprendizado
de 0.0001.

Os treinamentos dos modelos foram conduzidos por meio de ciclos iterativos de
ajuste de pesos, usando tanto o subconjunto de treinamento como o de validação. O
número total de épocas foi estabelecido em 100 para cada experimento. Para a arquitetura
do modelo e a manipulação de tensores, foi utilizada a biblioteca PyTorch na versão
1.13.0. A função Binary Cross-Entropy (BCE) foi adotada como função de perda, e para
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otimização dos parâmetros dos modelos, empregou-se o otimizador Stochastic Gradient
Descent (SGD). Os pesos salvos ao final de cada treinamento correspondem à época de
menor valor de loss obtido no conjunto de validação.

Experimento Base de dados Pesos iniciais

1 Lemon Quality ImageNet

2 Mangas Embrapa ImageNet

3 Maçãs 1.0 - NIR ImageNet

4 Maçãs 1.0 - RGB ImageNet

5 Mangas Embrapa ImageNet + Lemon Quality

6 Maçãs 1.0 - NIR ImageNet + Lemon Quality

7 Maçãs 1.0 - RGB ImageNet + Lemon Quality

8 Maçãs 1.0 - NIR ImageNet + Lemon Quality + Mangas Embrapa

9 Maçãs 1.0 - RGB ImageNet + Lemon Quality + Mangas Embrapa

10 Maçãs 1.0 - RGB ImageNet + Lemon Quality + Mangas Embrapa + Maçãs 1.0 - NIR

11 Maçãs 1.0 - RGB ImageNet + Mangas Embrapa

12 Maçãs 1.0 - RGB ImageNet + Maçãs 1.0 - NIR

Tabela 2 – Treinamentos realizados. A coluna "Base de dados"indica a base de dados
utilizada para treinar o classificador e a coluna "Pesos iniciais", o conjunto de
pesos utilizado como ponto de partida.

3.5 Avaliação do aprendizado

A avaliação do desempenho do modelo foi realizada através de métricas quantitativas
de precisão (Equação 3.1), recall (Equação 3.2), acurácia (Equação 3.3) e F1-Score (Equação
3.4). Além disso, foram geradas a matriz de confusão e a curva de precision-recall. Para a
análise, considerou-se um verdadeiro positivo (VP) amostras classificadas corretamente
como de “má qualidade”, verdadeiro negativo (VN), amostras corretamente classificadas
como “boa qualidade”. Falso positivo (FP), amostras de “boa qualidade” identificadas como
de “má qualidade”, e falso negativo (FN) amostras classificadas como de “boa qualidade”
quando são de fato de “má qualidade”. Abaixo, são listadas as fórmulas para cálculo da
precisão, recall, acurácia e F1-Score.

Precisao = V P

V P + FP
(3.1)

Recall = V P

V P + FN
(3.2)
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Acuracia = V P + V N

V P + V N + FP + FN
(3.3)

F1 − Score = 2 ∗ Precisao ∗ Recall

Precisao + Recall
(3.4)

3.6 Resultados e Discussões

Nesta seção, são apresentados os resultados dos experimentos organizados na Tabela
2. A Tabela 3 contém os menores valores de loss obtidos durante os treinamentos, de modo
que as “colunas Loss BCE (Treina.)” e “Loss BCE (Valida.)” indicam, respectivamente,
os valores de loss nos conjuntos de treinamento e validação. O Experimento 1, realizado
apenas utilizando a base de dados Lemon Quality a partir de um treinamento do modelo
ResNet50 com a base de dados ImageNet, apresentou os índices mais baixos em ambos os
conjuntos. Esse desempenho destaca-se, em grande parte, devido à extensiva quantidade e
distribuição equilibrada de amostras nesta base de dados.

Experimento Base de dados Pesos Iniciais Loss BCE (Treina.) Loss BCE (Valida.)

1 Lemon Quality ImageNet 0.018 0.012

2 Mangas Embrapa ImageNet 0.618 0.665

3 Maçãs 1.0 - NIR ImageNet 0.675 0.631

4 Maçãs 1.0 - RGB ImageNet 0.675 0.682

5 Mangas Embrapa Experimento 1 0.441 0.662

6 Maçãs 1.0 - NIR Experimento 1 0.494 0.253

7 Maçãs 1.0 - RGB Experimento 1 0.494 0.467

8 Maçãs 1.0 - NIR Experimento 5 0.396 0.314

9 Maçãs 1.0 - RGB Experimento 5 0.514 0.411

10 Maçãs 1.0 - RGB Experimento 8 0.471 0.452

11 Maçãs 1.0 - RGB Experimento 2 0.686 0.682

12 Maçãs 1.0 - RGB Experimento 3 0.676 0.680

Tabela 3 – Resultados dos experimentos de classificação de qualidade de frutas

Os Experimentos 2, 3 e 4, por conseguinte, exibiram valores de loss relativamente
mais elevados, sugerindo desafios específicos associados às bases de dados Mangas Embrapa,
Maçãs 1.0 - NIR e Maçãs 1.0 RGB. Adicionalmente, essas bases possuem uma quantidade
reduzida de amostras em comparação com a Lemon Quality, um fator crucial para o
aumento dos índices de loss.

Os Experimentos 5, 6 e 7 utilizaram os pesos do Experimento 1 como ponto de
partida, e o Experimento 6 apresentou uma redução significativa no loss de validação em
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comparação com o Experimento 3. Isso indica, à primeira vista, que o pré-treinamento
realizado com a base de dados Lemon Quality contribuiu para melhorias no desempenho.

Os Experimentos 8 e 9 partiram dos pesos treinados no Experimento 5. Observa-se
que a base de dados Mangas Embrapa contribuiu para otimizar o treinamento com a base
de dados Maçãs 1.0 - NIR. No entanto, o mesmo não se aplicou à versão RGB dessa base
de dados. Uma possível interpretação é que os defeitos presentes nas mangas têm altas
frequências, assim como nas imagens da base Maçãs 1.0 - NIR. Contudo, isso não ocorre
na versão RGB dessa base de dados.

Outro ponto a ser destacado é que o Experimento 10, treinado com base no
Experimento 8, não apresentou avanços significativos em comparação com o Experimento
9. Isso sugere que tanto a base de dados Mangas Embrapa quanto a base Maçãs 1.0 - NIR,
não contribuíram para melhorias no desempenho de treinamento. Os Experimentos 11 e
12 reforçam essa ideia, pois ambos apresentaram desempenhos semelhantes aos obtidos no
Experimento 4, realizado a partir da base ImageNet. Portanto, o treinamento realizado
utilizando a base de dados Lemon Quality foi a principal responsável pelas melhorias
reportadas no desempenho do modelo ResNet50 com imagens de maçãs em RGB, mesmo
sua versão em NIR sendo composta essencialmente pelas mesmas maçãs.

As avaliações realizadas no subconjunto de teste da base de dados Maçãs 1.0 - RGB
estão organizadas na Tabela 4. A grande dificuldade em se extrair indicadores confiáveis foi
o baixo número de amostras. Ao todo, foram utilizadas 5 amostras classificadas como “boa
qualidade” e 2 amostras como “má qualidade”. Ainda assim, é importante ressaltar que
esse cenário caracteriza-se como corriqueiro no dia-a-dia de um especialista em aprendizado
de máquinas e que, em determinados casos, é necessário recorrer à outros recursos como
por exemplo modelos mais robustos e técnicas mais avançadas para suprir a carência de
dados, não cobertas nesse estudo.

Experimento Base de dados Pesos Iniciais Acurácia Precisão Recall F1-Score

4 Maçãs 1.0 - RGB ImageNet 0.714 0.500 0.500 0.500

7 Maçãs 1.0 - RGB Experimento 1 0.571 0.571 1.000 0.400

9 Maçãs 1.0 - RGB Experimento 5 0.428 0.333 1.000 0.500

10 Maçãs 1.0 - RGB Experimento 8 0.428 0.333 1.000 0.500

11 Maçãs 1.0 - RGB Experimento 2 0.285 0.285 1.000 0.444

12 Maçãs 1.0 - RGB Experimento 3 0.571 0.400 1.000 0.571

Tabela 4 – Resultados dos experimentos de classificação de qualidade de frutas

A princípio, nota-se que a maior parte dos experimentos resultou em Recall igual
a 1. Em outras palavras, isso significa que as duas amostras de “má qualidade” foram
corretamente classificadas como sendo de “má qualidade”. Em contrapartida, os valores
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de Precisão se mostraram baixos, o que corresponde a dizer que o modelo apresentou
dificuldades para classificar algumas das 5 amostras de “boa qualidade” como sendo,
realmente, de “boa qualidade”. Embora os resultados obtidos não forneçam uma clara ideia
da capacidade de generalização do modelo ao inferir novas amostras, devido ao conjunto
de testes não ser representativo o suficiente, os valores apresentados na Tabela 3 fornecem
fortes evidências de que a escolha da base de dados e a estratégia de transferência de
aprendizado têm impacto direto na eficácia do modelo. Além disso, os resultados sugerem
que foi mais vantajoso realizar uma tarefa de pré-treinamento em uma base de dados
composta por uma grande quantidade de imagens de limões do que aprender em uma base
de dados pequena composta pelas mesmas maçãs na banda NIR, onde os defeitos estão
mais realçados. Por fim, é importante ressaltar que acumular o aprendizado em bases de
dados diversas através de sucessivas transferências de aprendizado não necessariamente
resulta em uma maior robustez do modelo.



37

4 CONCLUSÕES

Neste trabalho, exploramos o impacto da transferência de aprendizado no treina-
mento do modelo ResNet50 para classificação de maçãs em duas classes: “boa qualidade”
e “má qualidade”. Para isso, criamos uma base de dados composta por 70 imagens de
maçãs nas bandas RGB e infravermelho próximo (NIR). Além das imagens de maçãs na
faixa NIR, outras bases de dados de diferentes frutos, como limões e mangas, fizeram
parte do pré-treinamento. Os resultados obtidos sugerem que a escolha da base de dados e
a estratégia de transferência de aprendizado têm impacto direto na eficácia do modelo.
Além disso, os resultados sugerem que o aprendizado em bases de dados diversas através
de sucessivas transferências de aprendizado não necessariamente resulta em uma maior
robustez do modelo. Das bases estudadas, a que mais contribuiu para a melhoria do
desempenho de treinamento para classificação de maçãs RGB foi a base composta por
limões. Apesar de apresentar características físicas distintas das maçãs, como cor, textura
e aspecto dos defeitos, ela possui mais imagens e isso pareceu contribuir significativamente
para um melhor desempenho do classificador durante o treinamento.
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